状压DP入门
最短Hamilton路径
Description
给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。
Input Format
第一行一个整数n。 接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。 对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
Output Format
一个整数,表示最短Hamilton路径的长度。
Sample Input
40 2 1 32 0 2 11 2 0 13 1 1 0
Sample Output
4
解析
很容易想到的朴素解法是枚举全排列,时间复杂度\(O(n*!n)\),显然是会\(TLE\)的。注意到\(n<20\),我们考虑状态压缩\(DP\)。设\(f[i][S]\)代表当前遍历状态为\(S\),到了第\(i\)个点的最短长度。如何理解遍历状态\(S\)呢?我们把它当做一个二进制的\(01\)串,从右数第i位为如果为\(0\),就说明节点i没有被遍历到过,如果第\(i\)位为\(1\),则说明节点i被遍历到过了。我们将整个图的遍历状态记为一个二进制数,这就是状态压缩。
那么我们考虑如何\(DP\)。我们将编号记为从\(1\)开始的,那么初始状态就是\(f[1][1]=0\)。
这里我们需要先理解状态的查询和赋值操作:1.
2.S&(1<<(i-1))
代表取出状态S的(从右往左)第i位S|(1<<(i-1))
代表将状态S的(从右往左)第i位赋值为1
那么我们就可以得到状态转移方程了:\[f[j][S|(1<<(j-1))]=\min\{f[i][S]+dis[i][j]\}\]
需要满足节点\(j\)未访问,节点\(i\)已经访问过了。状态的初值一开始均为正无穷,枚举\(S,i,j\)即可转移,时间复杂度\(O(n^2*2^n)\),目标状态为\(f[n][(1<<n)-1]\)。
\(Code:\)
#includeusing namespace std;const int N=20;int n,dis[N+5][N+5],f[N+5][(1<